Phosphatases modulate the bistable sporulation gene expression pattern in Bacillus subtilis.
نویسندگان
چکیده
Summary Spore formation in the Gram-positive bacterium Bacillus subtilis is a last resort adaptive response to starvation. To initiate sporulation, the key regulator in this process, Spo0A, needs to be activated by the so-called phosphorelay. Within a sporulating culture of B. subtilis, some cells initiate this developmental program, while other cells do not. Therefore, initiation of sporulation appears to be a regulatory process with a bistable outcome. Using a single cell analytical approach, we show that the autostimulatory loop of spo0A is responsible for generating a bistable response resulting in phenotypic variation within the sporulating culture. It is demonstrated that the main function of RapA, a phosphorelay phosphatase, is to maintain the bistable sporulation gene expression. As rapA expression is quorum regulated, it follows that quorum sensing influences sporulation bistability. Deletion of spo0E, a phosphatase directly acting on Spo0A approximately P, resulted in abolishment of the bistable expression pattern. Artificial induction of a heterologous Rap phosphatase restored heterogeneity in a rapA or spo0E mutant. These results demonstrate that with external phosphatases, B. subtilis can use the phosphorelay as a tuner to modulate the bistable outcome of the sporulating culture. This shows that B. subtilis employs multiple pathways to maintain the bistable nature of a sporulating culture, stressing the physiological importance of this phenomenon.
منابع مشابه
Single cell analysis of gene expression patterns of competence development and initiation of sporulation in Bacillus subtilis grown on chemically defined media.
AIM Understanding the basis for the heterogeneous (or bistable) expression patterns of competence development and sporulation in Bacillus subtilis. METHODS AND RESULTS Using flow cytometric analyses of various promoter-GFP fusions, we have determined the single-cell gene expression patterns of competence development and initiation of sporulation in a chemically defined medium (CDM) and in bio...
متن کاملBroadly heterogeneous activation of the master regulator for sporulation in Bacillus subtilis.
A model system for investigating how developmental regulatory networks determine cell fate is spore formation in Bacillus subtilis. The master regulator for sporulation is Spo0A, which is activated by phosphorylation via a phosphorelay that is subject to three positive feedback loops. The ultimate decision to sporulate is, however, stochastic in that only a portion of the population sporulates ...
متن کاملThe extracellular Phr peptide-Rap phosphatase signaling circuit of Bacillus subtilis.
In the field of cell-cell communication, an emerging class of extracellular signaling peptides that function intracellularly has been identified in Gram-positive bacteria. One illustrative member of this group is the Phr family of extracellular signaling peptides of Bacillus subtilis. The Phr signaling peptides are secreted by the bacterium, and then, despite the presence of intracellular pepti...
متن کاملIntegration of σB activity into the decision-making process of sporulation initiation in Bacillus subtilis.
Spo0A∼P is the master regulator of sporulation in Bacillus subtilis. Activity of Spo0A is regulated by a phosphorelay integrating multiple positive and negative signals by the action of kinases and phosphatases. The phosphatase Spo0E specifically inactivates the response regulator Spo0A∼P by dephosphorylation. We identified a σ(B)-type promoter adjacent to spo0E that is activated by the general...
متن کاملExpression of yeast mitochondrial aconitase in Bacillus subtilis.
Expression of yeast mitochondrial aconitase (Aco1) in a Bacillus subtilis aconitase null mutant restored aconitase activity and glutamate prototrophy but only partially restored sporulation. Late sporulation gene expression in the Aco1-expressing strain was delayed.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular microbiology
دوره 56 6 شماره
صفحات -
تاریخ انتشار 2005